首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  国内免费   1篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
21.
Kerim T  Imin N  Weinman JJ  Rolfe BG 《Proteomics》2003,3(5):738-751
We used proteomic analysis to investigate the changing patterns of protein synthesis during pollen development in anthers from rice plants grown under strictly controlled growth conditions. Cytological analysis and external growth measurements such as anther length, auricle distances and days before flowering were used to determine pollen developmental stages. This allowed the collection of synchronous anther materials representing six discrete pollen developmental stages. Proteins were extracted from the anther samples and separated by two-dimensional gel electrophoresis to produce proteome maps. The anther proteome maps of different developmental stages were compared and 150 protein spots, which were changed consistently during development, were analysed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to produce peptide mass fingerprint (PMF) data. Database searches using these PMF data revealed the identities of 40 of the protein spots analyzed. These 40 proteins represent 33 unique gene products. Four protein spots that could not be identified by PMF analysis were analysed by N-terminal microsequencing. Multiple charge-isoforms of vacuolar acid invertase, fructokinase, beta-expansin and profilin were identified. These proteins are closely associated with sugar metabolism, cell elongation and cell expansion, all of which are cell activities that are essential to pollen germination. The existence of multiple isoforms of the same proteins suggests that during the process of pollen development some kind of post-translational modification of these proteins occurs.  相似文献   
22.
23.
Male reproductive development in rice is very sensitive to various forms of environmental stresses including low temperature. A few days of cold treatment (<20 degrees C) at the young microspore stage induce severe pollen sterility and thus large grain yield reductions. To investigate this phenomenon, anther proteins at the early stages of microspore development, with or without cold treatment at 12 degrees C, were extracted, separated by two-dimensional gel electrophoresis, and compared. The cold-sensitive cultivar Doongara and the relatively cold-tolerant cultivar HSC55 were used. The abundance of 37 anther proteins was changed more than 2-fold after 1, 2, and 4 days of cold treatment in cv. Doongara. Among them, one protein was newly induced, 32 protein spots were up-regulated, and four protein spots were down-regulated. Of these 37 protein spots, we identified two anther-specific proteins (putative lipid transfer protein and Osg6B) and a calreticulin that were down-regulated and a cystine synthase, a beta-6 subunit of the 20 S proteasome, an H protein of the glycine cleavage system, cytochrome c oxidase subunit VB, an osmotin protein homologue, a putative 6-phosphogluconolactonase, a putative adenylate kinase, a putative cysteine proteinase inhibitor, ribosomal protein S12E, a caffeoyl-CoA O-methyltransferase, and a monodehydroascorbate reductase that were up-regulated. Identification of these proteins is available upon request. Accumulation of these proteins did not vary greatly after cold treatment in panicles of cv. Doongara or in the anthers of the cv. HSC55. The newly induced protein named Oryza sativa cold-induced anther protein (OsCIA) was identified as an unknown protein. The OsCIA protein was detected in panicles, leaves, and seedling tissues under normal growth conditions. Quantitative real time RT-PCR analysis of OsCIA mRNA expression showed no significant change between low temperature-treated and untreated plants. A possible regulatory role for the newly induced protein is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号